Attachment of human endothelial cells to polyester vascular grafts: pre-coating with adhesive protein assemblies and resistance to short-term shear stress.

نویسندگان

  • J Chlupáč
  • E Filová
  • T Riedel
  • M Houska
  • E Brynda
  • M Remy-Zolghadri
  • R Bareille
  • P Fernandez
  • R Daculsi
  • C Bourget
  • L Bordenave
  • L Bačáková
چکیده

Cardiovascular prosthetic bypass grafts do not endothelialize spontaneously in humans, and so they pose a thrombotic risk. Seeding with cells improves their performance, particularly in small-caliber applications. Knitted tubular polyethylene-terephthalate (PET) vascular prostheses (6 mm) with commercial type I collagen (PET/Co) were modified in the lumen by the adsorption of laminin (LM), by coating with a fibrin network (Fb) or a combination of Fb and fibronectin (Fb/FN). Primary human saphenous vein endothelial cells were seeded (1.50 × 10(5)/cm2), cultured for 72 h and exposed to laminar shear stress 15 dyn/cm(2) for 40 and 120 min. The control static grafts were excluded from shearing. The cell adherence after 4 h on PET/Co, PET/Co +LM, PET/Co +Fb and PET/Co +Fb/FN was 22%, 30%, 19% and 27% of seeding, respectively. Compared to the static grafts, the cell density on PET/Co and PET/Co +LM dropped to 61% and 50%, respectively, after 120 min of flow. The cells on PET/Co +Fb and PET/Co +Fb/FN did not show any detachment during 2 h of shear stress. Pre-coating the clinically-used PET/Co vascular prosthesis with LM or Fb/FN adhesive protein assemblies promotes the adherence of endothelium. Cell retention under flow is improved particularly on fibrin-containing (Fb and Fb/FN) surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Endothelial cell attachment and shear response on biomimetic polymer-coated vascular grafts.

Endothelial cell (EC) adhesion, shear retention, morphology, and hemostatic gene expression on fibronectin (FN) and RGD fluorosurfactant polymer (FSP)-coated expanded polytetrafluoroethylene grafts were investigated using an in vitro perfusion system. ECs were sodded on both types of grafts and exposed to 8 dyn/cm(2) of shear stress. After 24 h, the EC retention on RGD-FSP-coated grafts was 59 ...

متن کامل

Oligonucleotide and Parylene Surface Coating of Polystyrene and ePTFE for Improved Endothelial Cell Attachment and Hemocompatibility

In vivo self-endothelialization by endothelial cell adhesion on cardiovascular implants is highly desirable. DNA-oligonucleotides are an intriguing coating material with nonimmunogenic characteristics and the feasibility of easy and rapid chemical fabrication. The objective of this study was the creation of cell adhesive DNA-oligonucleotide coatings on vascular implant surfaces. DNA-oligonucleo...

متن کامل

Linear Shear Conditioning Improves Vascular Graft Retention of Adipose-Derived Stem Cells by Upregulation of the α5β1 Integrin

Use of adult adipose-derived stem cells (ASCs) as endothelial cell substitutes in vascular tissue engineering is attractive because of their availability. However, when seeded onto decellularized vascular scaffolding and exposed to physiological fluid shear force, ASCs are physically separated from the graft lumen. Herein we have investigated methods of increasing initial ASC attachment using l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological research

دوره 63 2  شماره 

صفحات  -

تاریخ انتشار 2014